
12 Issue 154 May 2003 CIRCUIT CELLAR® www.circuitcellar.com

remember the
first time someone

asked me to design a
cable tester. I was a

bright-eyed co-op student on a sum-
mer work term. My boss asked me to
design a cable tester to find the faults
in the printer cables we were manu-
facturing. To test the cables, we’d nor-
mally plug one end into the printer,
the other end into a computer, and
then print. Of course, if the cables
were miswired, tracing the problem
required a manual pin-to-pin investi-
gation with an ohmmeter. Verifying
25 to 36 connections by hand turned
out to be a tad time consuming, to say
the least. To do the job, I was given an
Apple II computer (this was some
time ago), a Basic compiler, and a
handful of decoders and multiplexers.

After thinking about the problem, I
got busy and came up with a design
that accurately pinpointed the cable
wiring problems.

The reason I mention that incident
is because today, almost 25 years later,
many of the same problems still exist.
There aren’t any general-purpose, inex-
pensive methods for testing cables.

Technology has made some advances,
so we now have more computing
power than the Apple II available in
an 18-pin DIP package. Compilers are
also much better. After seeing my
company’s production personnel strug-
gle to test a multitude of cables, I
experienced déjà vu. What they really
needed was a modern version of the
tester I had designed in my university
days. Of course, this updated design
would be based on a PIC processor and
use a modern freeware language called
JAL (see Photo 1). [1] At the time, I
wanted to minimize development
costs, so buying a PIC C compiler was
out of the question. Take a look at the
sidebar for a brief description of JAL.

DESIGN ON A SHOESTRING
To minimize hardware complexity, I

initially looked at the PICs with the
highest number of input/output pins.
Unfortunately, our largest cable had
31 pins, requiring a PIC with at least
64 pins (including power and ground).

I could have used a PIC17C766 with
84 pins and 66 I/O ports, but it’s quite
pricey—almost five times the cost of
the part I chose. Then there was the
problem of exposing the PIC’s pins to
static discharges. In addition, the
cables might have been wired so badly
that outputs were driving other out-
puts. Consequently, all of the I/O con-
nections were first buffered, so that in
the case of any damage, the produc-

General-Purpose Cable
Tester

l
Michael built his first
cable tester with an
Apple II, Basic compil-
er, and several
decoders and multi-
plexers. Twenty-five
years later, it’s still
hard to find cost-effec-
tive, general-purpose
cable testers. So he’s
at it again, but this
time he’s armed with
a PIC micro and JAL.

Michael Griebling

FEATURE
ARTICLE

Stand-Alone or with a GUI

Command PIC Reply Function

Pxx yy<CR> OK<CR> Program EEPROM location xx (hex) with data yy (decimal) and reply
NPR<CR> Programming EEPROM failed
NAK<CR> Illegal EEPROM address, invalid pin number, or other errors

Tyy<CR> Vzzzzzzzz<CR> Test pin yy (decimal 1-32) and return result vector zzzz (hex)
NAK<CR> Communication error or illegal pin number

Table 1—Take a look at the host commands and the PIC reply. Sending a host command P3F 20 programs EEP-
ROM location 0x3F with 0x20. The host command T10 causes pin 10 to be pulsed low and the resultant vector
reply from the PIC should be VFFFFFDFF.

Circuit Cellar, the Magazine for Computer Applications. Reprinted
by permission. For subscription information, call (860) 875-2199, or
www.circuitcellar.com. Entire contents copyright ©2001 Circuit
Cellar Inc. All rights reserved.

www.circuitcellar.com CIRCUIT CELLAR® Issue 154 May 2003 13

GOD’S IN THE DETAILS
Figure 2 shows the detailed

schematic of the PIC16F628
processor and surrounding cir-
cuitry. [2] The cable pin driver
signals are generated by five
74HCT138 decoders based on
a 6-bit address supplied by the
PIC. The lower three bits
select one of eight outputs
from U9, U13, U15, and U17,
which are applied to the pin
driver circuitry (Figure 3).
The upper three bits select
one of the four decoders and
also generate four status LED
driver signals.

The buffer array (7407)
drives the pin LEDs and provides the
open-collector isolation for the 32 cable-
drive pins. The buffers are arranged in
four banks of eight bits. Figure 3 shows
the detail of a single bank. Eight LEDs
monitor the pin drive status so that
when a particular pin is being driven
(grounded), the corresponding LED
illuminates. Note that a single resistor
suffices for all 32 LEDs, because only
one output pin is driven at a time. An
open-collector buffer is located after
the LED so cable short circuits don’t
cause multiple LEDs to illuminate.

At the receiving end of the cable, U7,
U12, U14, and U16 form a 32-input
multiplexer that selects one of the cable
inputs at a time (see Figure 2). The PIC
selects a particular input using a 6-bit
address, where the lower three bits

tion staff could easily replace a cheap,
socketed driver and not the more
expensive PIC, which would then
need to be reprogrammed and retested.

A second requirement was to give
the operator a visible way to know
that the test is in progress and which
wiring connections are incorrect when
operating in Stand-Alone mode. My
solution was to equip the cable tester
with a series of LEDs—one for each
pin—that would show when a particu-
lar pin was driven and could double as
a simple fault display.

When operating independently, up
to four different cables can be tested,
one at a time, based on vectors stored
in the internal EEPROM. The individ-
ual tests are initiated when one of
four push buttons is pressed.

Figure 1 illustrates the basic hard-
ware components used in the cable
tester. The central PIC processor drives
a five-to-32 decoder that strobes each
cable pin sequentially. A second three-
to-eight decoder is used to either select
the pin output strobes or drive four sta-
tus LEDs. The cable-drive signals are
buffered with open-collector, high-volt-
age drivers, which prevent cable short
circuits from damaging any pin drivers.
On the receiving-cable end, a 32-to-one
analog multiplexer is controlled by the
PIC to select one cable pin at a time. A
second three-to-eight decoder selects
either the analog multiplexer or one of
the four test-select switches. Remote
mode is also available when a PC-based
program is connected to the cable tester
with a standard RS-232 serial cable.

A BRIEF HISTORY OF JAL
Developed by Wouter van Ooijen, just another lan-

guage (JAL) was patterned after Ada, the military stan-
dard language. But if you’re familiar with Pascal, you
should have no trouble understanding JAL. You’ll find
the software free of charge at www.voti.nl/jal. The
author would like to be notified via e-mail, postcard, or
letter for any significant use.

When I spoke to Wouter, he said he created JAL
because he did not like any of the PIC16F84’s low-cost,
high-level languages. Also, he thought implementing a
high-level language seemed like a worthwhile project.

Since its creation in 1999, a small but devoted group
of embedded programmers has been using JAL. The
group meets via a mailing list located at groups.
yahoo.com/group/jallist/.

In its present incarnation, JAL supports Microchip PIC
(e.g., PIC16C84, ’16F84, ’12C508, ’12C509, and ’16F877)
and Ubicom SX (e.g., SX18 and SX28) microcontrollers as
targets. It provides conditions, statements, expressions,
subprograms, and variables. Available data types include
bits, bytes, and universal integers. Structured data types
such as arrays and records are not yet available. A pro-
gram can be split into separate files that are all included
in the main source code file; however, separate compila-
tion isn’t supported so that global optimizations can be
performed more easily.

A separate Windows IDE called JalCC is available at
oase.uci.kun.nl/~mientki/PIC/JALcc.htm. It has been
adapted by Stef Mientki from the BricxCC IDE. Stef and
others are actively supporting it.

RS-232 IF

32-to-1
MUX

CIN
 1-32

3-to-8
Decode

Test
switches

PIC16F628

RX/TX

A0-A2 (INP0-2)

INP4-7 A4, A6, A7

A3 (INP3)

ID1-4

5-V
Switcher

9–32 V In 5 V

ID1-4

B0, B3, B4

3-to-8
DecodeB6–B7 SEL3-6

5-to-32
Decode

DRV
 1-32

COUT

1-32

OC Buffers
and
LEDs

SEL0-3ID1-4

Figure 1—Look at the PIC16F628 surrounded by address decoders and input multiplexers. A 5-V switcher powers the circuitry,
and an RS-232 interface connects to an external PC to download cable definitions and/or operate as a slave tester.

14 Issue 154 May 2003 CIRCUIT CELLAR® www.circuitcellar.com

select one of eight inputs and the upper
three bits select a particular multiplexer
via U10, a three-to-eight decoder.

In addition to sampling the cable
inputs, this circuitry also provides puls-
es to the four test-select push buttons.
One common end of each push button
is tied to the INP3 or multiplexer input
to the PIC. Thus, by sequentially
selecting outputs Y4 through Y7 of
U10 and monitoring the INP3 input, a
simple keyboard-style scanning func-
tion is provided. R4 provides a needed
pull-up for the INP3 multiplexer input;
however, at 10 kΩ, it tends to slow
down the cable tester when cables
with a lot of capacitance are tested.

The RS-232 interface is a straightfor-

ward implementation that is driven by
the PIC’s serial interface pins. The
interface operates at 9600 bps; it’s used
to download new cable vectors to the
EEPROM for stand-alone operation, or
you can use it to remotely control
cable testing when implemented with
the PC-based software. You may down-
load the RS-232 schematic from the
Circuit Cellar ftp site.

The 5-V power supply is a simple
switcher-based design with an
LM2670 adjustable Buck mode regula-
tor. [3] You may download a schemat-
ic diagram of the 5-V power supply
from the Circuit Cellar ftp site.

I chose an LM2670 3-A regulator
instead of a linear regulator, because

it’s a stock item used in my company’s
products. The power consumption of
the cable tester is negligible, so the
existing part is admittedly overkill.
Switching regulators are much more
efficient than linear regulators. This
may be a consideration if the cable
tester were to be battery powered.

ROOM FOR GROWTH
With some minor software and hard-

ware changes, it should be possible to
easily expand the size of cables that
can be tested up to 60 pins. The Y4-
to-Y7 outputs of U10 would each drive
an additional CD4051 analog multi-
plexer, and the upper four pins would
serve as the manual-test push button

Figure 2—The Microchip PIC16F628 microcontroller drives 74HCT138 address decoders that are buffered by open-collector drivers. At the input CD4051 MUXes multiplex the
cable inputs to a single input pin, INP3.

16 Issue 154 May 2003 CIRCUIT CELLAR® www.circuitcellar.com

the first character is a P (i.e., program
EEPROM location), it expects to get a
two-digit hexadecimal address followed
by a space, and then a two-digit deci-
mal data byte terminated by a <CR>.

The legal range of the address is from
0x00 to 0x7F, and the pin number is a
decimal number from one to 32. A
value of zero is used to indicate that the
pin is not connected. The pin number
is written to EEPROM at the specified
address. If all goes well, the PIC replies
with an OK<CR> (note that <CR> indi-
cates a single byte containing a carriage
return or 0x0D), otherwise an NPR<CR>
response indicates that there was an
error during EEPROM programming. A
NAK<CR> reply indicates that an invalid
address or pin number was received.

If the first character is a T (i.e., test
pin), it expects a two-digit decimal pin
number representing the pin to be tested
with a range from one to 32. The com-
mand must be terminated with a car-
riage return (<CR>). In response, the PIC
will drive the specified pin low, read all
the input pins (compressed into a 32-bit
word), and reply with a V followed by
the eight-digit hexadecimal number rep-
resenting the input pin test result. The
reply word’s least significant bit repre-
sents the state of input pin 1. You may
download the complete PIC source
code from the Circuit Cellar ftp site.

scan. Similarly, the Y4-to-Y7 outputs of
U11 would drive four more 74HC138
decoders, and the upper four bits would
be dedicated to the status LEDs.

ALL IN THE SOFTWARE
Obviously, the hardware design for

the cable tester is basic. You’ll find
it’s easy to build even with wire-wrap-
ping techniques. Providing additional
functionality in software is the key to
keeping down costs. With this in
mind, I deliberately kept the hardware
simple and performed most of the
work in the software.

The top-level software flowchart is
shown in Figure 4. Initially, the PIC
sets up the I/O ports and the serial
communication port. Next, the Ready
LED is turned on and a brief identifying
message is sent via the RS-232 seri-
al port. Then, the program enters a
busy-wait loop, alternately polling
the manual-test push buttons and
the serial-input data-received flag.
When serial data is received, the
GetCommand routine is called to
acquire a complete host command.

Table 1 shows the available com-
mands and their syntax. Otherwise,
if serial data isn’t received, the PIC
scans the test push buttons. If a
button is pressed, the PIC will clear
any logged faults from a previous
test, call the TestCable routine to
perform the stand-alone cable test,
and call the errReport routine to
display any fault codes via the pin
and status LEDs.

YOUR WISH, MY COMMAND
Listing 1 shows the GetCommand

routine. The active character is
returned with the rsGet routine. If

Photo 2—A cable is selected from the leftmost list. The pin
definitions for that cable are shown in the rightmost list.
Clicking on a pin allows the pin connection to be altered
using the pop-up menus below the second list.

Photo 1—A total of five cables can be tested when
the tester is operating as a slave to a host computer.
The pin LEDs are visible to the left of the photo, and
the status LEDs are located at the top left.

www.circuitcellar.com CIRCUIT CELLAR® Issue 154 May 2003 19

STAND-ALONE AND DELIVER
When operating in Stand-Alone

mode, the cable tester uses the contents
of EEPROM to define one of four test
vectors to use during testing. You may
download additional EEPROM informa-
tion from the Circuit Cellar ftp site.

The EEPROM address represents an
implied pin number. Memory address
0x00 represents pin 1 for cable 1 and
address 0x7F represents pin 32 for
cable 4. The contents of each memory
location identify the pin that is con-
nected to the implied pin number. For
example, assume EEPROM location
0x10 holds a value 0x08. This means
that for cable 1, connector A, pin 17 is
connected to connector B, pin 8. (Note
that connector A is driven as connec-
tor B is read as an input.)

There are some limitations to the
Stand-Alone mode implied by the
fixed EEPROM size. Only a cable with
one-to-one or many-to-one pin map-
ping is supported. This means one or
more pins on connector A can be tied
to only one unique connection on
connector B.

If you were willing to
sacrifice the ability of
testing four cables and
instead limit the cable
tester to one cable at a
time, you could support
any pin mapping, because
you could hold an entire
32-bit result vector in
EEPROM for each pin of a
32-pin cable. In that case,
you would need 128 bytes
of EEPROM to store the
result vectors to allow
the testing of any cable.
In my case, most of the
cables I had to test were
either many-to-one or
one-to-one pin mappings,
so this wasn’t an issue.
There are no limitations
when using the PC-based
cable tester interface.

When testing a cable,
the TestCable routine
begins by driving pin 1
low via the pdrvStart()
function (see Listing 2).
Next, all 32 input pins
are scanned and assem-

bled—using prcvScanAll()—into a
32-bit result vector that’s kept in vari-
ables b0, b1, b2, and b3. Note that b0
holds the most significant byte corre-
sponding to input pins 25 through 32.
The most significant bit of this byte

represents input pin 32. Then, the
result vector is then bit-wise inverted,
and the algorithm uses the current pin
that’s driven to index the EEPROM
cable vectors and retrieves the pin
number (tpin) that should be driven.

Assuming that tpin is
nonzero (i.e., is not open-
circuit), you can check
whether or not the bit cor-
responding to tpin is set
in b0 to b3 using the
vecIsSet() function. If
this bit is set, the corre-
sponding bit in the b0-to-b3
result vector is cleared and
the algorithm continues.
If the bit isn’t set, which
means you’ve detected an
open circuit, an open-cir-
cuit error is set using the
errSet() function.

Next, a test is performed
to see whether any other bit
is set that would indicate a
short circuit from the driv-
ing pin to the shorted pin.
If another bit is found set
in the result vector, the
errSet() function is called
with a short-circuit error.
The pdrvNext() function
drives the next pin in
sequence, and the afore-
mentioned steps are repeat-
ed to detect any errors
for this pin.

Reset

Initialize I/O
and RS-232

 port

Turn on
Ready LED

rsGreeting

Display initial greeting
on any attached
RS-232 device

SCI input?
N Y

Scan push
buttons

GetCommand

Active
button?

N Y

Clear logged
test errors

TestCableEEPROM
cable vectors

errReport

Sequentially drive all
outputs, verify results against
EEPROM cable vectors and log errors

Flash pin LED and the
Open/Close LEDs to
report any logged errors

Process commands
from the host computer
to write cable vectors
to EEPROM or execute
a test vector and return
the results

Figure 4—The top-level PIC software shows the initialization, stand-alone, and remote-
cable test paths. The GetCommand routine provides cable definition downloads and
remote test capabilities.

Figure 3—The 7407 open-collector buffers isolate the cable to be tested so that only the driven LED illuminates.
These drivers also provide high-voltage protection against accidental ESD discharges into the cable tester pins.

20 Issue 154 May 2003 CIRCUIT CELLAR® www.circuitcellar.com

If you’re observant, you’ll discover
the rsPut() and rsPutHex() func-
tions strewn about the code. These rou-
tines provide an external diagnostic
capability when the stand-alone cable
tester is connected to an external ter-
minal or terminal emulator on a PC.
For each tested pin, a report is generat-
ed containing the result vector, the
source and destination pins, and the
pass/fail test condition. A typical report
would be V00000001 0701T<CR>. This
means the test was performed from
connector A, pin 7 to connector B, pin 1
with a result vector of 0x00000001 (or
pin 1 is active). It passed successfully.

HOW IT WORKS
Several examples will clarify how

the cable tester detects open and short
circuits. If pin 1 is driven as shown in
Figure 5a, there are four possible out-
comes: an open circuit where the
result vector becomes 11111111111;
one pin (6) is driven to give a result
vector of 11111011111 (see Figure 5b);
multiple pins (6 and 9) are driven to
give a result vector of 11011011111
(see Figure 5c); or multiple pins (1 and
4) are connected to the same pin to
give a result vector of 11111011111
(see Figure 5d).

Figure 5a illustrates an open-circuit
result. Depending on whether or not
the current pin test vector should be
open circuited, this could be either an
error or a valid result. Figure 5b shows
the most typical case of a one-to-one
mapping, where a pin on one side of the
cable is connected to a pin on another
side of the cable. If the required pin
isn’t found where it’s expected, an
open-circuit fault is generated.

Figure 5c shows a one-to-many pin
mapping. In Stand-Alone mode, the
cable tester cannot handle this particu-
lar scenario. There is a reason for this.
Because you can store only one pin con-
nection for each pin that’s driven, you
have no way of showing multiple pins
connected to the driving pin. Of course,
any one-to-many mapping can be easily
turned into a many-to-one mapping
simply by reversing the cable ends.

Figure 5d illustrates a many-to-one
pin mapping. This scenario is support-
ed in Stand-Alone mode because each
pin on the drive side has stored a sin-

gle connection in EEPROM. Thus,
pins 1 and 4 will be connected to pin 6.

Naturally, these examples are sim-
plified and, in the real world, will

often be combined. Thus, many-to-
many connections may be found
together with some pins shorted and
others remaining open.

Listing 1—The GetCommand() function is responsible for processing commands received from the host
computer. Two modes are available: the first programs the PIC EEPROM with a received data byte; the sec-
ond initiates a pin test and responds with a test vector.

procedure GetCommand is
var byte adr, --Write EEPROM address

data --EEPROM data to write

inbuf = rsGet()
--Looking for Pxx yy<CR> command

if inbuf == "P" then
--Get the EEPROM address

adr = rsGetHex()
if ! CheckNum(adr, 0x7F) then return end if

--Get space character
if ! CheckChar(" ") then return end if

--Get the pin number
data = rsGetNum()
if ! CheckNum(data, 32) then return end if

inbuf = rsGet()
if inbuf != ASCII_CR then

--Error: expecting <CR>
rsPutNak()
return

end if
--Program EEPROM data

if vecProgram(adr, data) then
rsPutOK() --Programmed location OK

else
rsPutNProg() --Error: couldn't program EEPROM

end if
--Looking for Txx<CR> command

elsif inbuf == "T" then
data = rsGetNum()
if ! CheckNum(data, 32) then return end if

inbuf = rsGet()
if inbuf != ASCII_CR | data == 0 then

--Error: expecting <CR>
rsPutNak()
return

end if
--Output test vector to pins

pdrvPut(data - 1)
--Scan the inputs

var byte b0, b1, b2, b3
prcvScanAll(b0, b1, b2, b3)
if ! DEBUG then pdrvPut(POWER_LED) end if

--Output the scanned results
rsPut = "V"
rsPutHex(b0)
rsPutHex(b1)
rsPutHex(b2)
rsPutHex(b3)
rsPut = ASCII_CR

--Otherwise we have an error
else

GetCR()
rsPutNak()

end if
end procedure

www.circuitcellar.com CIRCUIT CELLAR® Issue 154 May 2003 21

GETTING SOME RESPECT
These days, if you don’t have a fancy

GUI, nobody gives you any respect.
The PC-based cable-test program was
designed to provide a friendly interface
to define, modify, and download test
cables from a PC and get some respect
from people who’d rather deal with
software than hardware. Another

advantage of the PC-based interface is
that cable-test results can be saved to
disk. This provides a permanent
record of each cable’s test for quality
assurance or audit purposes.

Take a look at Photo 2. After the
program starts, it displays several
panes: four tabbed panes comprising a
definition pane to define the cables; a

download pane to program the PIC
EEPROM with up to four cable defini-
tions; a test pane to remotely test a
selected cable; and a settings pane
that changes some default behaviors
(e.g., where the cable definitions are
stored and which COM port to use
(not working)).

The default cable definition directo-
ry is located in the installation direc-
tory under the name “Cables.” I
wouldn’t advise changing any of the
default settings unless, like me, you
know what you’re doing.

The PC-based software program is
connected via a serial link (9600 bps,
8 bits, no parity, 1 stop bit) to the
cable tester. You may download the
executable for this program from the
Circuit Cellar ftp site. Installation is
straightforward. The program should
operate on any PC running Windows
95/98 or NT. It has not been tested
under Windows 2000 or XP, but it
should work.

There are some limitations, as well.
Only COM port 1 is currently sup-
ported, because I didn’t have good
serial interface driver routines for
C++. So, I used the default serial class,
which was terrible. Another limita-
tion is that if you’re entering text in
an input string and hit Enter, the pro-
gram will exit.

CABLE BY ANY OTHER NAME
To define a new cable, click on the

Define Cable tab. If preinstalled cables
exist in your Cables directory, they
will appear in the list box as shown in
Photo 2. The pin definitions appear in
another scrolling list to the right of
the cable names. The highlighted
cable’s pins are always shown. If a par-
ticular pin connection is highlighted,
it can be edited by selecting different
To connections in the area below the
pin definitions. Up to two connec-
tions per pin can be selected.

As you know, the cable tester only
understands single-pin connections. It
will happily lock up and die if you try
to download a cable with a double-pin
connection. So, why include this fea-
ture? Well, when using the PC to
remotely test cables, double-pin con-
nections are allowed because the PC
performs the cable test.

Listing 2—The TestCable() function performs the stand-alone cable testing functions. EEPROM test
vectors are compared with the cable to prepare a fault log and, at the test’s conclusion, flash the pin and
status LEDs to give a fault indication.

procedure TestCable (byte in vector) is
var byte tpin, --Current test vector pin ID

dpin --Current driving pin ID
--Drive each pin sequentially

pdrvStart()
while ! pdrvDone() loop

--Scan all the inputs
var byte b0, b1, b2, b3
prcvScanAll(b0, b1, b2, b3)
if ! DEBUG then pdrvPut(POWER_LED) end if

--Negate the test vectors
b0 = ! b0
b1 = ! b1
b2 = ! b2
b3 = ! b3

--Look up desired pin connection
dpin = pdrvPin()
tpin = vecLookup(vector, dpin)

rsPut = "V"
rsPutHex(b0)
rsPutHex(b1)
rsPutHex(b2)
rsPutHex(b3)
rsPut = " "
rsPutHex(dpin)
rsPutHex(tpin)

--Test whether the connection is good
if tpin != 0 then
if vecIsSet(tpin, b0, b1, b2, b3) then

vecClrBit(tpin, b0, b1, b2, b3)
rsPut = "T"

else
--Generate an open-circuit error

errSet(OPEN, dpin, tpin)
rsPut = "F"

end if
end if

rsPut = ASCII_CR

var byte vbit = 1
while vbit <= 32 loop
if vecIsSet(vbit, b0, b1, b2, b3) then

errSet(SHORT, dpin, vbit)
end if
vbit = vbit + 1

end loop

pdrvNext() --Drive the next pin
end loop

end procedure

22 Issue 154 May 2003 CIRCUIT CELLAR® www.circuitcellar.com

Michael Griebling graduated from the
University of Waterloo with a BSEE.
He has been designing embedded
hardware, software, and firmware in
the aerospace industry for the past
20 years. Currently, he’s the senior
electrical engineer for the High
Performance Display group at Luxell
Technologies located in Mississauga,
Ontario. His interests include pro-
gramming in obscure computer lan-
guages (e.g., Ada, Oberon-2, JAL, and
Modula-2), learning about neural net-
works and fuzzy logic systems, and
helping with the HCS II. You may
reach him at mgriebling@luxell.com.

To create a new cable, click on the
New Cable button. An empty cable
with all NC connections should
appear highlighted. Change the name
by editing the Cable Name field.
Click on pins to change the pin con-
nections using the pop-up menus
located below the pin list.

When you’re done, you can exit the
program, because cable definitions are
always stored on disk. Be cautious

with older operating systems. They
still may have an eight-character
name limit for files, because the cable
definitions are stored as files in the
Cables directory with the cable name
as the file name. Select a cable to
either delete the entire cable by click-
ing on the Delete Cable button or
clear the pin numbers by clicking on
the Clear Pins button.

GET DOWNLOADING
Click on the Download Cable tab to

view the download pane. The same
cables that were defined will be avail-
able from each of the pop-up menus
for cables 1 through 4.

After the cables to be downloaded
are selected, click on the Download
Cables button to initiate the down-
load to the cable tester. (Don’t forget
to connect the PC to the cable tester.)
A progress indicator will show the
download status. If any cables are left
blank, they will not be downloaded.

REMOTE TESTING
Click on the Test Cable tab to view

the cable-test pane. The same cables
that were defined will be available for
the Cable ID pop-up menu. There are
also two fields used to fill in an opera-
tor’s name and a work order identifier
for cable-test reports that will be kept on
file. A date will be automatically added.

Click on the Test Cable button (it
helps the test to pass if a cable is con-
nected), and a series of pass/fail mes-
sages will appear in the report win-
dow. Wait until the test is completed
(all 32 pins are always tested, even if
only two pins are used), and then click
on the Save Report button to save the
test results to disk. You may down-
load a sample test report from the
Circuit Cellar ftp site.

THAT’S ALL FOLKS
Although the cable tester program

tour was a bit of a whirlwind, it’s fair-
ly easy to use thanks to the GUI. You
shouldn’t have any problems, but if
any arise, you may reach me via e-
mail. Because of my current workload,
I can’t promise an immediate
response, but I will eventually reply.

The cable tester has been actively
used in my company’s production area

Cable under test

0

1
1
1
1
1
1
1
1
1
1

1

2
3
4
5
6
7
8
9

10
11

1

1
1
1
1
1
1
1
1

1
1

1

2
3
4
5
6
7
8
9

10
11

Pin Drive Vector Pin

Cable under test

0

1
1
1
1
1
1
1
1
1
1

1

2
3
4
5
6
7
8
9

10
11

1

1
1
1
1
0
1
1
1

1
1

1

2
3
4
5
6
7
8
9

10
11

Pin Drive Vector Pin

Cable under test

0

1
1
1
1
1
1
1
1
1
1

1

2
3
4
5
6
7
8
9

10
11

1

1
1
1
1
0
1
1
0

1
1

1

2
3
4
5
6
7
8
9

10
11

Pin Drive Vector Pin

Cable under test

0

1
1
0
1
1
1
1
1
1
1

1

2
3
4
5
6
7
8
9

10
11

1

1
1
1
1
0
1
1
1

1
1

1

2
3
4
5
6
7
8
9

10
11

Pin Drive Vector Pin

Figure 5a—If the EEPROM pin number is zero or
open circuit, this result is valid; however, in all other
cases, this would be an open-circuit fault condition.
b—If the target pin location does not match the inter-
nal EEPROM pin number, an open-circuit fault is gen-
erated. c—This pattern cannot be supported in Stand-
Alone mode. When operating with an external host,
checks are performed to determine whether or not
all of the target pins do in fact map to the driving pin.
If a pin is not found, it is flagged as a short circuit.
d—The tester handles this situation like the one-to-
one mapping where any missing connection is
detected as an open-circuit fault. Any unexpected
connections are logged as short-circuit faults.

a)

b)

c)

d)

PROJECT FILES
To download the code and addi-
tional files, go to ftp.circuitcellar.
com/pub/Circuit_Cellar/2003/154/.

REFERENCES
[1] W. van Ooijen, JAL Manual,

1999.
[2] Microchip Technology, Inc.,

PIC16F62X Flash-based 8-bit
CMOS Microcontroller,
DS40300C, 2003.

[3] National Semiconductor Corp.,
LM2670 Simple Switcher High
Efficiency 3A Step-Down
Voltage Regulator with Sync,
DS100942, 2000.

SOURCES
PIC16F628 Microcontroller
Microchip Technology, Inc.
(408) 792-7200
www.microchip.com

LM2670 Switching regulator
National Semiconductor Corp.
(800) 272-9959
www.national.com

74HCT138 Decoder
Philips Semiconductors
(800) 326-6586
www.semiconductors.philips.com

for almost a year. So far, no problems
have been reported.

Finally, I would like to thank every-
one at Luxell for helping to make this
project possible. Happy testing! I

ftp://ftp.circuitcellar.com/pub/Circuit_Cellar/2003/154/
http://www.microchip.com
http://www.national.com
http://www.semiconductors.philips.com

